skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Meng, Qingxi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Carlone, Luca; Kulic, Dana; Venture, Gentiane; Strader, Jared (Ed.)
    The central line dressing change is a life-critical procedure performed by nurses to provide patients with rapid infusion of fluids, such as blood and medications. Due to their complexity and the heavy workloads nurses face, dressing changes are prone to preventable errors that can result in central line-associated bloodstream infections (CLABSIs), leading to serious health complications or, in the worst cases, patient death. In the post-COVID-19 era, CLABSI rates have increased, partly due to the heightened nursing workload caused by shortages of both registered nurses and nurse educators. To address this challenge, healthcare facilities are seeking innovative nurse training solutions to complement expert nurse educators. In response, we present the design, development and evaluation of a robotic tutoring system, ASTRID: the Automated Sterile Technique Review and Instruction Device. ASTRID, which is the outcome of a two-year participatory design process, is designed to aid in the training of nursing skills essential for CLABSI prevention. First, we describe insights gained from interviews with nurse educators and nurses, which revealed the gaps of current training methods and requirements for new training tools. Based on these findings, we outline the development of our robotic tutor, which interacts with nursing students, providing real-time interventions and summary feedback to support skill acquisition. Finally, we present evaluations of the system's performance and perceived usefulness, conducted in a simulated clinical setting with nurse participants. These evaluations demonstrate the potential of our robotic tutor in nursing education. Our work highlights the importance of participatory design for robotics systems, and motivates new avenues for foundational research in robotics. 
    more » « less
    Free, publicly-accessible full text available June 21, 2026
  2. Abstract The amount of data produced by genome sequencing experiments has been growing rapidly over the past several years, making compression important for efficient storage, transfer and analysis of the data. In recent years, nanopore sequencing technologies have seen increasing adoption since they are portable, real-time and provide long reads. However, there has been limited progress on compression of nanopore sequencing reads obtained in FASTQ files since most existing tools are either general-purpose or specialized for short read data. We present NanoSpring, a reference-free compressor for nanopore sequencing reads, relying on an approximate assembly approach. We evaluate NanoSpring on a variety of datasets including bacterial, metagenomic, plant, animal, and human whole genome data. For recently basecalled high quality nanopore datasets, NanoSpring, which focuses only on the base sequences in the FASTQ file, uses just 0.35–0.65 bits per base which is 3–6$$\times$$ × lower than general purpose compressors like gzip. NanoSpring is competitive in compression ratio and compression resource usage with the state-of-the-art tool CoLoRd while being significantly faster at decompression when using multiple threads (> 4$$\times$$ × faster decompression with 20 threads). NanoSpring is available on GitHub athttps://github.com/qm2/NanoSpring. 
    more » « less